

WavePro DIGITAL OSCILLOSCOPES

Unleashing the Power of X-Stream Technology

Deep Memory—1 Mpts per channel standard memory. Options extend all the way to an industry-best 24 Mpts per channel.

Advanced Windows®—based operating system offers robust system performance, with an intuitive and informative user interface.

Display—Large 10.4" SVGA touch screen has 20% larger waveform display area than comparable oscilloscopes.

Accessories—Passive, active, and differential probes, as well as an O/E converter, can be connected to a WavePro DSO.

High Impedance Input—All WavePro DSO channels can be used at either 50 Ω or 1 M Ω , both selectable on the screen.

WavePilot—Controls give easy access to powerful signal analysis capabilities so you can gain insight and trace problems directly to their source.

QuickZoom—Automatically displays 10x magnified traces of all signals on multi-grids.

Analog Persistence—Switches between analog view and digital view so you can fully explore the signal's modulation.

Auto SetUp—One button automatically calls up a signal on the display.

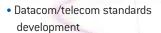
X-Stream Technology—Proprietary technology that enables data processing that is 10–100 times faster.

wavepro*

WavePro 7000 Series

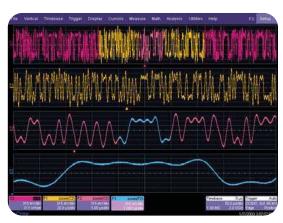
MEASURE COMPLEX SIGNALS WITH CONFIDENCE

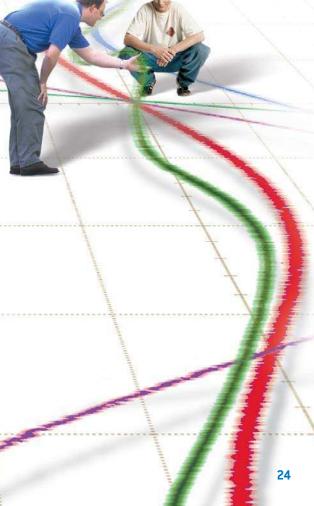
LeCroy has now integrated its industry leading SiGe ADC/amplifiers and groundbreaking X-Stream™ Technology into the WavePro DSO line. The WavePro 7000 Series brings fast and accurate measurement capability to 1 GHz and 3 GHz bandwidth applications. And it does it at an extremely attractive price.


Viewing a signal on a high-resolution screen is a good start, but today's engineering requires the ability to go inside the signal and conduct next-generation waveform measurement and analysis to get to the source of a problem. Such ability gives you far greater confidence in your measurements.

You can make faster more accurate more confident measurements with the WavePro 7000 Series through:

- Excellent signal integrity from SiGe amplifiers and ADCs
- GS/s single-shot sample rate on all channels (20 GS/s maximum) to capture signal details
- Acquisition of up to 48 million data points to maintain high sampling rates and complex signals


- Built-in 1 M Ω and 50 Ω selectable inputs
- 2 ps jitter noise floor
- Unique processing chain that gives you the ability to add customized measurements inside
- Fast WaveShape Analysis

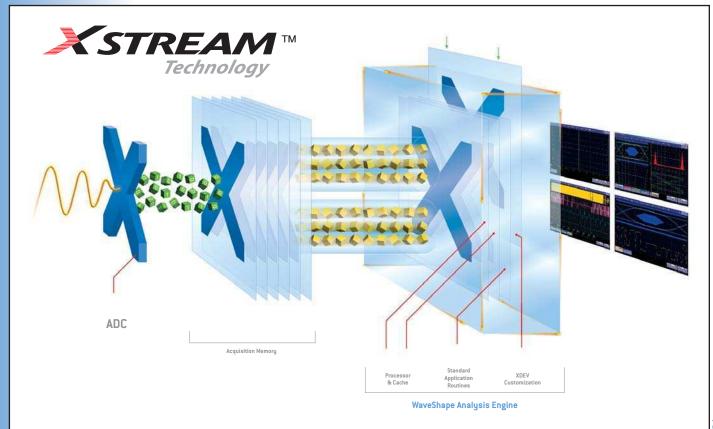

LeCroy's proprietary X-Stream
Technology is an extremely fast
streaming architecture that eliminates
the trade-offs between long record
lengths and quick processing. The
WavePro DSO, incorporating X-Stream
Technology, can conduct WaveShape
Analysis 10–100 times faster than any
other oscilloscope in the 1 GHz – 3 GHz
bandwidth class. That makes them
excellent tools for next-generation
designs, such as:

- Gigabit Ethernet
- USB 2.0
- Advanced Military Designs
- · Much, much, more

The WavePro oscilloscopes have a host of other features that simplify operation, such as a new processing web that makes it easy for you to setup measurements, a large color touch screen, and fast access to powerful capabilities. With our WavePro 7000 Series oscilloscopes, you'll never look at signal analysis the same way again.

A VavePro oscilloscopes are the only instruments in their bandwidth class that can accurately measure the long complex signals found in many of today's devices. That is because they fully incorporate LeCroy's proprietary X-Stream Technology. No other company can offer X-Stream Technology in any class. Only LeCroy can give you the measurement confidence you need to make sure your designs work.

WHAT IS X-STREAM TECHNOLOGY?

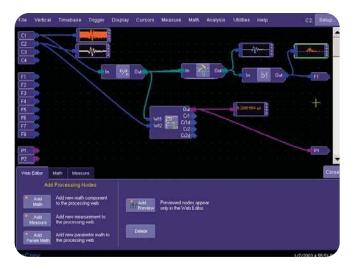

It's the foundation upon which LeCroy's WaveMaster and WavePro instruments rest. X-Stream Technology allows engineers to perform WaveShape Analysis at depths they could only dream about. X-Stream Technology makes those dreams come true by delivering extraordinary performance:

- Capture and analyze long records faster than ever before
- Utilize advanced tools for detailed analysis
- Customize your measurement capability
- Display your signal in 3D views and "Histicons" to see inside a signal

All of this is achieved because X-Stream Technology is an extremely fast streaming architecture that enables high throughput of data — even when the WavePro oscilloscopes are conducting complex measurements.

LeCroy's proprietary CMOS memory accepts 10 Gbytes of data in real time from each SiGe ADC, packetizes it, and speeds the data through dual high-speed pipelines to the CPU. Once in the CPU, LeCroy's proprietary software algorithms "capture" each packet, and perform many of the required calculations in the CPU's L1 cache memory.

This process eliminates the "fetching" of data and math instructions from RAM to minimize calculation time. It also allows user-created functions and measurements to be inserted using our XDEV option.



WORLD CLASS SIGNAL INTEGRITY AND IN-DEPTH ANALYSIS — Without Digging Deep into Your Pocket

Integrating the industry's only SiGe ADCs, large high resolution screen, advanced Windows operating system, and X-Stream Technology into the WavePro 7000 Series gives the new DSOs indepth analysis capability that is friendly to your bottom line. Now, you don't have to make a choice between total measurement confidence and budgetary constraints. With the WavePro oscilloscopes you can have both.

It starts with the oscilloscope's SiGe amplifiers with very flat bandwidth response followed by a 10 GS/s ADC on each channel (5 GS/s for the model 7000). The model 7100 is the first 1 GH/z oscilloscope in this class with 10 GS/s over-sampling. Standard memory is 1 Mpt per channel (500 kpts for the model 7100), with options extending all the way to an industry-best 24 Mpts per channel (48 Mpts when in dual channel mode). Such capability assures signal integrity when

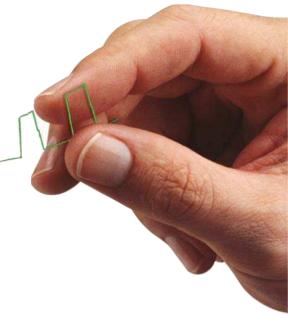
With the XMAP option, LeCroy's Processing Web lets you think about signal analysis graphically. Visualize an oscilloscope measurement as a chain of operations while seeing results at every step.

you analyze, so you don't have to worry about under-sampling the waveform.

Performance advantages continue with the oscilloscope's 2 ps jitter noise floor, which allows even small signal imperfections to be detected.

Plus, the WavePro 7300 is the first oscilloscope to offer both 1 M Ω and 50 Ω inputs in a 3 GHz instrument. This flexibility gives the WavePro 7300 the convenience of a high-impedance input for capturing lower bandwidth signals up to 500 MHz, combined with a very high performance SiGe 3 GHz, 50 Ω input.

EASY TO USE, SIMPLE TO VIEW RESULTS


Operation of the WavePro DSO is easy and intuitive. Adjust the timebase, voltage and cursors from the front panel knobs or use the most advanced touch screen user interface in oscilloscopes today. Getting to parameter measurements is fast and graphical. It's highly intuitive and adaptable to the way you like to work. An advanced Windows 2000-based operating system handles all the pull down menus and I/O to peripherals to add to the familiarity,

and offers robust system performance. Viewing the results is as easy as acquiring them. All WavePro oscilloscope models are designed with a 10.4-inch SVGA touch screen display with a waveform viewing area 20% larger than comparable oscilloscopes. Plus, LeCroy has designed features into the WavePro oscilloscopes that allow you to view your signal in the time, frequency, or statistical domains.

For example, the WavePro oscilloscopes have the ability to create up to eight unique zoom or math traces, each analyzing a different segment of the waveform. Calculations can be performed on the zoomed areas. A Multi-Zoom feature allows you to view time-correlated events, and AutoScroll is available to roll through the waveform.

Another unique viewing capability is Histicons — small histogram views that provide a visual indication of parameter distributions. Up to eight Histicons and their accompanying statistics can be displayed simultaneously, without adversely affecting the processing time.

A COMPREHENSIVE SUITE OF ANALYSIS OPTIONS

Now with the WavePro oscilloscopes there is a new level of WaveShape Analysis that allows engineers to troubleshoot 1–3 GHz circuits in ways that have never been possible. The XMAP suite of analysis options gives the oscilloscopes advanced capabilities that have previously been reserved for instruments operating at a higher bandwidth and price.

Imagine capturing large amounts of data and graphing it in intuitive, easily understandable ways to allow deep insight. Histogram, Track, and Trend capabilities allow you to use the long memory of the WavePro DSO to its best advantage. Expanded FFT algorithms provide unique spectral insights.

Simplify your use of an oscilloscope when you want to perform customized

analysis or math operations. Your own user-defined math, parameter measurement, or control routines can be quickly and easily inserted into the DSO processing stream. You can go way beyond basic "connectivity" or data export and make the oscilloscope your own measurement tool.

Jitter and timing analysis functions allow period, width, cycle-to-cycle, and other timing parameters to be measured. Results can be presented as statistics, histograms, or time domain tracks. Users can also view a Jitter FFT, which provides a spectral fingerprint of a signal's jitter sources.

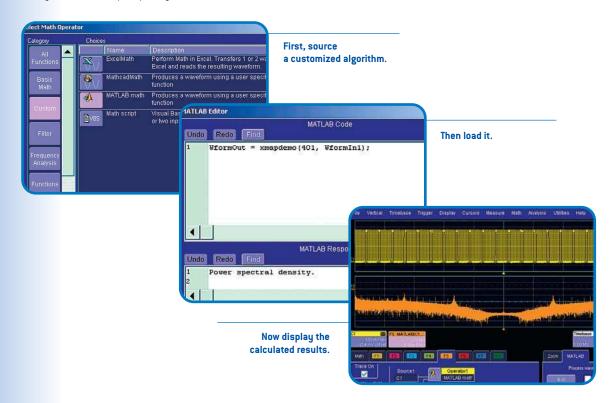
The XMAP option gives you all this utility and insight, and is just one of the full line of analysis packages available for the WavePro 7000 Series.

can be made with the standard

or via optional GPIB.

10/100Base-T network connection

functions go beyond measurement


techniques. LeCroy's CustomDSO

package allows the User Interface

- Port tools such as filters from your simulation environment into the scope to compare simulated signals with actual circuit performance. Validate if circuit performance matches the model and reduce characterization time.
- Build your own user interface. Add push buttons, frames, custom controls.

Insert proprietary calculations into the processing stream. See your parameter or math function updates live on every trigger. You can use all the oscilloscope tools on your custom measurement including cursors, parameters, persistence display, FFT, or any other oscilloscope capability.

	WavePro 7300	WavePro 7200	
Bandwidth	3 GHz	2 GHz	
Sample Rate on 4 channels (Maximum 2 Ch)	10 GS/s (20 GS/s / 2 Ch)	10 GS/s (20 GS/s / 2 Ch)	
Memory Standard	1M/Ch (2M / 2 Ch)	1M/Ch (2M / 2 Ch)	
Optional Memory Maximum	24M/Ch (48M / 2 Ch)	24M/Ch (48M / 2 Ch)	
Hi Z and 50 Ω selectable inputs	Yes	Yes	
Triggering	SMART Trigger, glitch, edge, pattern, interval		

	WavePro 7100	WavePro 7000	
Bandwidth	1 GHz	1 GHz	
Sample Rate on 4 channels (Maximum 2 Ch)	10 GS/s (20 GS/s / 2 Ch)	5 GS/s (10 GS/s / 2 Ch)	
Memory Standard	1M/Ch (2M / 2 Ch)	500k/Ch (1M / 2 Ch)	
Optional Memory Maximum	24M/Ch (48M / 2 Ch)	4M/Ch (8M / 2 Ch)	
Hi Z and 50 Ω selectable inputs	Yes	Yes	
Triggering	SMART Trigger, glitch, edge, pattern, interval		

WavePro 7000 Series Technical Specifications

Apolog Bondwidth @ EO O (2 4D)	WAVEPRO 7000 1 GHz	WAVEPRO 7100 1 GHz	WAVEPRO 7200 2 GHz	WAVEPRO 7300 3 GHz
Analog Bandwidth @ 50 Ω (-3 dB) Rise Time (Typical)	400 ps	400 ps	225 ps	3 GHZ 150 ps
Input Channels	400 ps	400 ps 4	225 ps	120 hz
			I MI I=	
Bandwidth Limiters		25 MHz; 200		
Input Impedance	5	0Ω ; $10 M\Omega //11$ pF typical		
Input Coupling	F0.	1 MΩ: AC, DC, GNE	<u>′</u>	
Maximum Input Voltage	50	Ω: 5 Vrms, 1 MΩ: 100 Vmax		
Channel-Channel Isolation		250:1 at same V/div sett		
Vertical Resolution		bits; up to 11 bits with enha	. ,	
Sensitivity	50 Ω: 2 m\		Ω : 2 mV – 2 V/div fully varial	ble
DC Gain Accuracy		±1.5% of full scale;	- 01	
Offset Range		50 Ω: ±700 mV @ 2		
		±1.5 V @ 5-10 ±10 V @ 0.102		
		1 MΩ: ±700 mV @ 2		
		±1.5 V @ 5-10		
		±20 V @ 0.102		
Offset Accuracy	=	± (1.5% of full scale + 0.5% o		
			,	
ORIZONTAL SYSTEM				
Timebases		Internal timebase common		
Time/Division Panas	an	external clock may be appli 20 ps/div – 10		
Time/Division Range Math and Zoom Traces	A ·	<u>'</u>		
Matri and Zoom Iraces		dependent zoom and 4 mat	h/zoom traces standard; IAP (Master Analysis package	5)
	o maul/Zi	or XMATH (Advanced		· J
Clock Accuracy		≤ 5 ppm @ 0		
Time Internal Accuracy		≤ 0.06 / SR + (5 ppm *		
Sample Rate and Delay Time Accurac	11	± 5 ppm ≤ 10s		
Jitter Noise Floor	9	2 ps rms @ 100 mV		
Trigger and Interpolator Jitter		≥ ps mis e 100 mv. ≤ 2.5 ps (ty	() /	
Channel-Channel Deskew Range		±4.5 n:	•	
External Clock	3U MH-		applied at the auxiliary input	
External clock	JU 1411 12	. – 1 6112, 30 \$2 Impedance,	applied at the advillary input	
CQUISITION SYSTEM				
			10.00/-	40.557-
<u> </u>	E CS/c	10 CS/c		
Single-Shot Sample Rate/Ch	5 GS/s	10 GS/s	10 GS/s	10 GS/s
Single-Shot Sample Rate/Ch 2 Channel Max.	10 GS/s	20 GS/s	20 GS/s	20 GS/s
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS)	10 GS/s	20 GS/s 00 GS/s for repetitive signal	20 GS/s s: 20 ps/div – 1 <i>µ</i> s/div	20 GS/s
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate	10 GS/s	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequ	20 GS/s s: 20 ps/div – 1 μ s/div lence Mode, up to 4 channels	20 GS/s
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time	10 GS/s 2 150,000	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequ $\leq 6 \mu s$	20 GS/s s: 20 ps/div – 1 μ s/div lence Mode, up to 4 channels	20 GS/s
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch	10 GS/s 2 150,000 4 CI	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequ $\leq 6 \mu s$	20 GS/s s: 20 ps/div – 1 µs/div lence Mode, up to 4 channels ch) Sequence Mode	20 GS/s
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	10 GS/s 2 150,000 4 CI	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence 6 μ s 1 (2 Ch) 4 Ch/(2 Ch)	20 GS/s s: 20 ps/div – 1 µs/div sence Mode, up to 4 channels ch) Sequence Mode 1 500 segments	20 GS/s
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M — Memory Option	10 GS/s 2 150,000 4 CI	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence 6 μ s) 10 (2 Ch) 4 Ch/(2 Ch) 10 (2 M/ 1M) 1 M/ 2 M/ 8	20 GS/s s: 20 ps/div – 1 µs/div tence Mode, up to 4 channels th) Sequence Mode 1 500 segments 1 1,000 segments	20 GS/s
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option	10 GS/s 2 150,000 4 CI	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence 6 μ s) 10 (2 Ch) 4 Ch/(2 Ch) 10 (1 M/ 1 M/ 2 M/ 8 M/ 8 M/ 16 M/ 1	20 GS/s s: 20 ps/div – 1 \mus/div lence Mode, up to 4 channels ch) Sequence Mode 1 500 segments 1 1,000 segments M 5,000 segments	20 GS/s]
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M — Memory Option L — Memory Option VL — Memory Option	10 GS/s 2 150,000 4 CI	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence 6 μ s) 10 A C C C C C C C C C C C C C C C C C C	20 GS/s s: 20 ps/div – 1 \(\mu\)s/div sence Mode, up to 4 channels (ch) Sequence Mode 1 500 segments 1 1,000 segments M 5,000 segments M 10,000 segment	20 GS/s) 6 6 8
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M — Memory Option L — Memory Option	10 GS/s 2 150,000 4 CI	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence 6 μ s) 10 (2 Ch) 4 Ch/(2 Ch) 10 (1 M/ 1 M/ 2 M/ 8 M/ 8 M/ 16 M/ 1	20 GS/s s: 20 ps/div – 1 \(\mu\)s/div sence Mode, up to 4 channels (ch) Sequence Mode 1 500 segments 1 1,000 segments M 5,000 segments M 10,000 segment	20 GS/s) 6 6 8 8
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M — Memory Option L — Memory Option VL — Memory Option XL — Memory Option	10 GS/s 2 150,000 4 CI	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence 6 μ s) 10 A C C C C C C C C C C C C C C C C C C	20 GS/s s: 20 ps/div – 1 \(\mu\)s/div sence Mode, up to 4 channels (ch) Sequence Mode 1 500 segments 1 1,000 segments M 5,000 segments M 10,000 segment	20 GS/s) 6 6 8 8
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option CQUISITION PROCESSING	10 GS/s 2 150,000 4 CI 50	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence of Land 1998) ≥ 6 µs 10 / (2 Ch) 4 Ch / (2 Ch) 10 / 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 GS/s s: 20 ps/div – 1 μs/div sence Mode, up to 4 channels ch) Sequence Mode 1 500 segments 1 1,000 segments M 5,000 segments M 10,000 segment M 20,000 segment	20 GS/s] 6 6 7 8 8 8 8 8
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option XL – Memory Option COUISITION PROCESSING Averaging	10 GS/s 2 150,000 4 CI 50	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence of μ) 10 A Ch (2 Ch) 4 Ch (2 Ch) 10 A Ch	20 GS/s s: 20 ps/div – 1 \(\mu\)s/div sence Mode, up to 4 channels (h) Sequence Mode 1 500 segments 1 1,000 segments M 5,000 segments M 10,000 segment M 20,000 segment	20 GS/s] 6 6 7 8 8 8 8 8
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option XL – Memory Option COUISITION PROCESSING Averaging Enhanced Resolution (ERES)	10 GS/s 2 150,000 4 CI 50	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence of Land Sequence of L	20 GS/s s: 20 ps/div — 1 \(\mu \)s/div lence Mode, up to 4 channels (h) Sequence Mode 1 500 segments 1 1,000 segments M 5,000 segments M 10,000 segment M 20,000 segment	20 GS/s] 6 6 7 8 8 8 8 8
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option XL – Memory Option COUISITION PROCESSING Averaging Enhanced Resolution (ERES) Envelope (Extrema)	10 GS/s 2 150,000 4 CI 50	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence of Land 19 and 1	20 GS/s s: 20 ps/div — 1 \(\mu \)s/div lence Mode, up to 4 channels (h) Sequence Mode 1 500 segments 1 1,000 segments 4 5,000 segments M 10,000 segment M 20,000 segment continuous averaging to 1 mill tical resolution to 1 million sweeps	20 GS/s] 6 6 7 8 8 8 8 8
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option XL – Memory Option CQUISITION PROCESSING Averaging Enhanced Resolution (ERES) Envelope (Extrema)	10 GS/s 2 150,000 4 CI 50	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence of Land Sequence of L	20 GS/s s: 20 ps/div — 1 \(\mu \)s/div lence Mode, up to 4 channels (h) Sequence Mode 1 500 segments 1 1,000 segments 4 5,000 segments M 10,000 segment M 20,000 segment continuous averaging to 1 mill tical resolution to 1 million sweeps	20 GS/s] 6 6 7 8 8 8 8 8
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option CQUISITION PROCESSING Averaging Enhanced Resolution (ERES) Envelope (Extrema) Interpolation	10 GS/s 2 150,000 4 CI 50	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence of Land 19 and 1	20 GS/s s: 20 ps/div — 1 \(\mu \)s/div lence Mode, up to 4 channels (h) Sequence Mode 1 500 segments 1 1,000 segments 4 5,000 segments M 10,000 segment M 20,000 segment continuous averaging to 1 mill tical resolution to 1 million sweeps	20 GS/s] 6 6 7 8 8 8 8 8
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option COUISITION PROCESSING Averaging Enhanced Resolution (ERES) Envelope (Extrema) Interpolation	10 GS/s 2 150,000 4 CI 50	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence of Land 19 and 1	20 GS/s s: 20 ps/div — 1 \(\mu \)s/div lence Mode, up to 4 channels ch) Sequence Mode 1 500 segments 1 1,000 segments 4 5,000 segments M 10,000 segment M 20,000 segment Interpretation of 1 millipartical resolution to 1 million sweeps x/x	20 GS/s] 6 6 8 8 8
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option CQUISITION PROCESSING Averaging Enhanced Resolution (ERES) Envelope (Extrema) Interpolation RIGGERING SYSTEM	10 GS/s 2 150,000 4 Cl 50 4	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequ ≤ 6 μs n/(2 Ch) 4 Ch/(2 Ch) 0k/1M 1M/2N M/8M 4M/8N - 8M/16I - 16M/32 - 24M/48 raging to 1 million sweeps; α From 8.5 to 11 bits ver Envelope, floor, roof for up Linear, sin	20 GS/s s: 20 ps/div — 1 \(\mu \)s/div lence Mode, up to 4 channels ch) Sequence Mode 1 500 segments 1 1,000 segments 4 5,000 segments M 10,000 segment M 20,000 segment Interpretation of 1 millipartical resolution to 1 million sweeps x/x	20 GS/s) S S S S Iion sweeps
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option CQUISITION PROCESSING Averaging Enhanced Resolution (ERES) Envelope (Extrema) Interpolation RIGGERING SYSTEM Modes	10 GS/s 2 150,000 4 Cl 50 4	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequ ≤ 6 μs n/(2 Ch) 4 Ch/(2 Ch) 0k/1M 1M/2N M/8M 4M/8N - 8M/16I - 16M/32 - 24M/48 raging to 1 million sweeps; α From 8.5 to 11 bits ver Envelope, floor, roof for up Linear, sin	20 GS/s s: 20 ps/div — 1 \(\mu \)s/div lence Mode, up to 4 channels ch) Sequence Mode 1 500 segments 1 1,000 segments 4 5,000 segments M 10,000 segment M 20,000 segment Interpretation to 1 millitical resolution to 1 million sweeps x/x le, and Stop 10, or line; slope and level union	20 GS/s) S S S S Iion sweeps
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option CQUISITION PROCESSING Averaging Enhanced Resolution (ERES) Envelope (Extrema) Interpolation RIGGERING SYSTEM Modes Sources	10 GS/s 2 150,000 4 Cl 50 4	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence of µs of	20 GS/s s: 20 ps/div – 1 \(\mu \)s/div lence Mode, up to 4 channels Ch) Sequence Mode 1 500 segments 1 1,000 segments M 5,000 segment M 20,000 segment M 20,000 segment Intical resolution To 1 million sweeps x/x le, and Stop 10, or line; slope and level unicingger)	20 GS/s) S S S S Iion sweeps
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option CQUISITION PROCESSING Averaging Enhanced Resolution (ERES) Envelope (Extrema) Interpolation RIGGERING SYSTEM Modes Sources Coupling Mode	10 GS/s 2 150,000 4 Cl 50 4	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequent / 10 / 10 / 10 / 10 / 10 / 10 / 10 / 1	$20 \mathrm{GS/s}$ s: $20 \mathrm{ps/div} - 1 \mu \mathrm{s/div}$ lence Mode, up to 4 channels ch] Sequence Mode 1 500 segments 1 1,000 segments M 5,000 segment M 20,000 segment M 20,000 segment continuous averaging to 1 millitical resolution to 1 million sweeps x/x le, and Stop 10, or line; slope and level unicitigger] 4Ω , A C1 $M\Omega$	20 GS/s) S S S S Iion sweeps
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option CQUISITION PROCESSING Averaging Enhanced Resolution (ERES) Envelope (Extrema) Interpolation RIGGERING SYSTEM Modes Sources Coupling Mode Pre-trigger Delay	10 GS/s 2 150,000 4 Cl 50 4	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequency) ≤ 6 µs 1 (2 Ch) 4 Ch / (2 Ch) 1 (2 Ch) 4 Ch / (2 Ch) 2 (10k / 1M 1M / 2N M / 8M 4M / 8M / 8	20 GS/s s: 20 ps/div $- 1 \mu$ s/div lence Mode, up to 4 channels ch) Sequence Mode 1 500 segments 1 1,000 segments 4 5,000 segments M 10,000 segment M 20,000 segment Intical resolution To 1 million sweeps x/x le, and Stop 10, or line; slope and level unicitizer] Ω AC1 MΩ alternative Action and the sequence of the	20 GS/s) S S S S Iion sweeps
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option CQUISITION PROCESSING Averaging Enhanced Resolution (ERES) Envelope (Extrema) Interpolation RIGGERING SYSTEM Modes Sources Coupling Mode Pre-trigger Delay Post-trigger Delay	10 GS/s 2 150,000 4 Cl 50 4	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequency) 6 µs	$20 \mathrm{GS/s}$ s: $20 \mathrm{ps/div} - 1 \mu \mathrm{s/div}$ lence Mode, up to 4 channels ch] Sequence Mode 1 500 segments 1 1,000 segments M 5,000 segment M 20,000 segment M 20,000 segment Intical resolution To 1 million sweeps $1000000000000000000000000000000000000$	20 GS/s) S S S S Iion sweeps
Single-Shot Sample Rate/Ch 2 Channel Max. Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard M – Memory Option L – Memory Option VL – Memory Option XL – Memory Option CQUISITION PROCESSING Averaging Enhanced Resolution (ERES) Envelope (Extrema) Interpolation RIGGERING SYSTEM Modes	10 GS/s 2 150,000 4 Cl 50 4	20 GS/s 00 GS/s for repetitive signal waveforms/second (in Sequence of μs o	20 GS/s s: 20 ps/div – 1 μs/div lence Mode, up to 4 channels ch) Sequence Mode 1 500 segments 1 1,000 segments 4 5,000 segments M 10,000 segment M 20,000 segment M 20,000 segment Intical resolution to 1 million sweeps x/x le, and Stop 10, or line; slope and level unicitizer 11 millions 12 millions 13 millions 14 millions 15 millions 16 millions 17 millions 18 millions 19 millions 19 millions 10 mil	20 GS/s) 6 S S S S S S S S S S S S S S S S S S

WavePro 7000 Series Technical Specifications (continued)

BASIC TRIGGERS	
Edge/Slope/Line	Triggers when signal meets slope and level condition
SMART TRIGGERS®	
State or Edge Qualified	Triggers on any input source only if a defined state or edge occurred on another input source
outo or Eugo quamion	Delay between sources is selectable by time or events
Dropout	Triggers if signal drops out for longer than selected time between 2 ns and 20 s
Pattern	Logic combination (AND, NAND, OR, NOR) of 5 inputs (4 channels and external trigger input)
	Each source can be high, low, or don't care
	The high and low level can be selected independently
	Triggers at start or end of the pattern
SMART TRIGGERS	
with Exclusion Technology	
Glitch	Triggers on positive or negative glitches with widths selectable from 600 ps to 20 s or on intermittent faults
Signal or Pattern Width	Triggers on positive or negative pulse widths selectable from 600 ps to 20 s or on intermittent faults
Signal or Pattern Interval	Triggers on intervals selectable between 2 ns and 20 s
S	
AUTOMATIC SETUP	
Auto Setup	Automatically sets timebase, trigger, and sensitivity to display a wide range of repetitive signals
Vertical Find Scale	Automatically sets the vertical sensitivity and offset for the selected channels
	to display a waveform with maximum dynamic range
PROBES	
Probes	(2) PP005A standard; Optional passive and active probes available
Probe System: Probus	Automatically detects and supports a variety of compatible probes
Scale Factors	Automatically or manually selected depending on probe used
001 00 1/1/1/250014 01001 1/4	
COLOR WAVEFORM DISPLAY	
Type	Color 10.4" flat-panel TFT-LCD with high resolution touch screen
Resolution	SVGA; 800 x 600 pixels
Realtime Clock	Dates, hours, minutes, seconds displayed with waveform SNTP support to synchronize to precision internet clocks
Number of Traces	Display a maximum of 8 traces. Simultaneously display channel, zoom, memory, and math traces
Grid Styles	Auto, Single, Dual, Quad, Octal, XY, Single + XY, Dual + XY
Waveform Styles	Sample dots joined or dots only
waverorm styles	Sample dots joined of dots only
ANALOG PERSISTENCE DISPLAY	
Analog and Color-Graded Persistence	Variable saturation levels; stores each trace's persistence data in memory.
Persistence Selections	Select analog, color, or three-dimensional
Trace Selection	Activate persistence on all or any combination of traces
Persistence Aging Time	Select from 500 ms to infinity
Sweeps Displayed	All accumulated, or all accumulated with last trace highlighted
ZOOM EXPANSION TRACES	
ZOOM EXI ANSION TRACES	Display up to 4 Zoom and 4 Math/Zoom traces;
	8 Math/Zoom traces available with XMAP (Master Analysis package) or XMATH (Advanced Math package)
	, J. 1 . 6.7
CPU	
Processor	Intel 1.7 GHz or better with MS Windows 2000 Platform
Processing Memory	Up to 1 Gbyte
INTERNAL WAVEFORM MEMORY	
	M1, M2, M3, M4 Internal Waveform Memory (store full-length waveforms with 16 bits/data point)
	or store to any number of files limited only by data storage media
CETUD CTODACE	
SETUP STORAGE	
Front Panel and Instrument Status	Store to the internal hard drive, floppy drive or to a USB-connected peripheral device

WavePro 7000 Series Technical Specifications (continued)

Remote Control	Via Windows Automation, or via LeCroy Remote Command Set	
GPIB Port (Optional)	Supports IEEE – 488.2	
Ethernet Port	10/100Base-T Ethernet interface	
Floppy Drive	Internal, DOS-format, 3.5" high-density	
USB Ports	4 USB ports support Windows compatible devices	
External Monitor Port Standard	15-pin D-Type SVGA-compatible	
Parallel Port	1 standard	

AUXILIARY OUTPUT

Signal Types	Select from calibrator or control signals output on front panel
Calibrator Signal	5 Hz $-$ 5 MHz square wave or DC level; 0.0 to 5.0 V into 50 Ω (0 $-$ 1 V into 1 M Ω) or TTL volts (selectable)
Control Signals	Trigger enabled, trigger out, pass/fail status

AUXILIARY INPUT

Signal Types Selected from External Trigger or External Clock input on front panel

GENERAL

Auto Calibration	Ensures specified DC and timing accuracy is maintained for 1 year minimum
Power Requirements	100–120 VAC at 50/60/400 Hz; 200–240 VAC at 50/60 Hz; Automatic AC Voltage selection
	Power consumption < 200 VA

ENVIRONMENTAL

Temperature (Operating)	+5 °C to +40 °C including floppy disk and CD-ROM drives	
Temperature (Nonoperating)	−20 °C to +60 °C	
Humidity (Operating)	5% to 80% relative humidity (noncondensing) up to +30 °C	
	Upper limit derates to 25% relative humidity (noncondensing) at +40 $^\circ$ C	
Humidity (Nonoperating)	5% to 95% relative humidity (noncondensing) as tested per MIL-PRF-28800F	
Altitude (Operating)	up to 10,000 ft. (3048 m) at or below +25 $^{\circ}\text{C}$	
Altitude (Nonoperating)	up to 40,000 ft. (12,192 m)	
Random Vibration (Operating)	0.31 g rms 5 Hz to 500 Hz, 15 minutes in each of three orthogonal axes	
Random Vibration (Nonoperating)	2.4 g rms 5 Hz to 500 Hz, 15 minutes in each of three orthogonal axes	
Functional Shock	20 g peak, half sine, 11 ms pulse, 3 shocks (positive and negative)	
	in each of three orthogonal axes, 18 shocks total	

PHYSICAL DIMENSIONS

Dimensions (HWD)	264 mm x 397 mm x 491 mm; 10.4" x 15.6" x 19.3" (height excludes feet)
Weight	18 kg; 39 lbs.
Shipping Weight	24 kg; 53 lbs.

CERTIFICATIONS

CE Approved, UL and cUL listed; conforms to EN 61326-1, EN 61010-1, UL 3111-1, and CSA C22.2 No. 1010.1

WARRANTY AND SERVICE

3-year warranty; calibration recommended annually
Optional service programs include extended warranty, upgrades, and calibration service

WavePro 7000 Series Technical Specifications (continued)

STANDARD

Math Tools

Display up to four math function traces (F1–F4). The easy to use graphical interface simplifies setup of up to two operations on each function trace, and function traces can be chained together to perform math-on-math.

absolute value integral invert (negate) average (summed) average (continuous) log (base e) log (base 10) derivative deskew (resample) product (x) difference (-) ratio (/) enhanced resolution reciprocal (to 11 bits vertical) rescale (with units) envelope roof exp (base e) (sinx)/x exp (base 10) square fft (power spectrum, magnitude, square root phase, up to 25 kpts) sum (+) trend (datalog) of 1000 events

histogram of 1000 events zoom (identity)

Pass/Fail Testing

Simultaneously test multiple parameters against selectable parameter limits or pre-defined masks. Pass or fail conditions can initiate actions including document to local or networked files, email the image of the failure, save waveforms, send a pulse out at the front panel auxiliary NC output, or (with the GPIB option) send a GPIB SRQ.

OPTIONAL

Master Analysis Package (XMAP)

This package provides maximum capability and flexibility, and includes all the functionality present in XMATH, XDEV, and JTA2.

Advanced Math Package (XMATH)

This package provides a comprehensive set of signal WaveShape Analysis Tools providing insight into the waveshape of complex signals. Additional capability provided by XMATH includes:

- Intuitive, Graphical Math Setup (Processing Web) with unlimited chaining of functions
- 8 math traces total [4 additional]
- Parameter math add, subtract, multiply, or divide two different parameters
- Histograms expanded with 19 histogram parameters and up to 2 billion
- Trend (datalog) of up to 1 million events
- Track graphs of any measurement parameter
- FFT capability added to include: power averaging, power density, real and imaginary components, frequency domain parameters, and FFT on up to 25 Mpts.
- Narrow band power measurements
- Auto-correlation function
- Sparse function
- · Cubic and Quadratic Interpolation function

Advanced Customization Package (XDEV)

This package provides a set of tools to modify the scope and customize it to meet your unique needs. Additional capability provided by XDEV includes:

• Creation of your own measurement parameter or math function, using third party software packages, and display the result in the scope.

Supported third party software packages include:

- VBScript - MATLAB - Excel - Mathcad
- CustomDSO create your own user interface in a scope dialog box
- Addition of macro keys to run VBScript files
- Support for plug-ins

Measure Tools

Displays any 8 parameters together with statistics, including their average, high, low, and standard deviations. Histicons provide a fast, dynamic view of parameters and wave shape characteristics.

amplitude level @ x std. deviation area maximum top width base mean cycles median median data minimum phase delay number of points time @ minimum (min.) Δ delay +overshoot time @ maximum (max.) Λ time @ level duty cycle -overshoot duration peak-to-peak Δ time @ level from trigger falltime period [90-10%, 80-20%, x @ max @ level) x@min. risetime frequency [10-90%, 20-80%, first @ level) last rms

Timing Tools

LeCroy M1 Timing Tools software runs inside your WavePro oscilloscope, acquires data, and calculates, displays, and analyzes jitter in clock and serial data. A wide variety of measurement tools are available including differential crossing point measurements. Jitter viewing tools include line graph, histogram, jitter, spectrum text, and eye diagram. Available in an advanced or or basic version.

LeCroy M1 Timing Tool (Advanced, 1 scope) LeCROY M1 / ADV-1 LeCroy M1 Timing Tool (Advanced, 4 scopes) LeCROY M1 / ADV-4 LeCroy M1 Timing Tool (Basic) LeCROY M1 / BASIC

Jitter and Timing Analysis Package (JTA2)

This package provides jitter timing and analysis using time, frequency, and statistical views for common timing parameters, and also includes other useful tools. JTA2 includes:

- · Jitter and timing parameters, with "Track" graphs of
- Cycle-Cycle Jitter - Hold - Period - N-Cycle - Half Period - Skew - N-Cycle with start - Width - Duty Cycle - Time Interval Error - Duty Cycle Error - Frequencu
- Edge@lv parameter (counts edges)
- Histograms expanded with 19 histogram parameters and up to 2 billion
- Trend (datalog) of up to 1 million events
- Track graphs of all parameters
- Persistence histogram, persistence trace (mean, range, sigma)

Disk Drive Measurements Package (DDM2)

This package provides disk drive parameter measurements and related mathematical functions for performing disk drive WaveShape Analysis.

 Disk Drive Parameters are as follows: amplitude assymetry local time between overwrite pulse width 50 local base local time at minimum pulse width 50local baseline separation local time at maximum pulse width 50+ local maximum local time peak-trough local minimum resolution local time over threshold local number track average amplitude local time trough-peak local peak-peak track average amplitudelocal time under threshold track average amplitude+ local time between events narrow band phase local time between peaks auto-correlation s/n narrow band power non-linear transition shift

- Correlation function
- Trend (datalog) of up to 1 million events
- Histograms expanded with 18 histogram parameters and up to 2 billion

WavePro 7000 Series Ordering Information

WAVEPRO 4-CHANNEL DIGITAL OSCILLOSCOPES	PRODUCT CODE
3 GHz 20 GS/s (2 Ch); 10 GS/s 4 Ch 1 M Ω & 50 Ω Color DS0	WavePro 7300
2 Mpts/2 Ch; 1 Mpts/Ch Standard	
2 GHz 20 GS/s (2 Ch); 10 GS/s 4 Ch 1 M Ω & 50 Ω Color DS0	WavePro 7200
2 Mpts/2 Ch; 1 Mpts/Ch Standard	
1 GHz 20 GS/s (2 Ch); 10 GS/s 4 Ch 1 M Ω & 50 Ω Color DS0	WavePro 7100
2 Mpts 2 Ch; 1 Mpts/Ch Standard	
1 GHz 10 GS/s (2 Ch); 5 GS/s 4 Ch 1 M Ω & 50 Ω Color DS0	WavePro 7000
1 Mpts 2 Ch; 500 kpts/Ch Standard	
INCLUDED WITH STANDARD CONFIGURATION	
10:1 10 MΩ Passive Probes (Qty. 2)	PP005A
Operators Manual; Quick Reference Guide; CD-ROM with OM/RCM and Utility software and Recovery software	
Remote Control Manual	
Floppy Disk Drive	
CD-ROM Drive	
Optical 3 button Wheel Mouse – USB	
Standard Ports; 10/100Base-T Ethernet, Parallel, SVGA Video Output, USB	
Protective Front Cover	
Standard Commercial Calibration and Performance Certificate	
3-Year Warranty	
MEMORY OPTIONS	
8 Mpts/2 Ch, 4 Mpts/Ch	-M
16 Mpts/2 Ch, 8 Mpts/Ch	-L
32 Mpts/2 Ch, 16 Mpts/Ch	-VL
48 Mpts/2 Ch, 24 Mpts/Ch	-XL
Note: WavePro 7000 unit's maximum memory is "M" option	
HARDWARE OPTIONS	CDID 4
IEEE-488 Remote Control Interface	GPIB-1 RHD
Removable Hard Drive Option	кни
WAVESHAPE ANALYSIS PACKAGES	
X-Stream Math, Processing and Developer's Kit (includes XMATH, XDEV, JTA2)	XMAP
Advanced Math Analysis Package	XMATH
Developer's Customization Kit	XDEV
Jitter and Timing Analysis	JTA2
Digital Filter Package	DFP2
Serial Data Mask Testing Package	SDM
Disk Drive Measurement Package	DDM2
LeCroy M1 Timing Tools	M1/ADV-1
SELECTED ACCESSORIES	
10:1 10 M Ω Passive Probes	PP005A
3.5 GHz Active Voltage Probe	HFP3500
2.5 GHz Active Voltage Probe	HFP2500
1.5 GHz Active Voltage Probe	HFP1500
WaveLink Differential Probes	D300/200
Current Probe	CP and AP series
0/E Converters 500–1630 nm	0E 425/455 & 525/555
Keyboard	KYBD-1
Oscilloscope Cart	OC1021
Oscilloscope Cart with additional shelf and drawer	0C1024
Rackmount – 25" Slide	RMA-25
Rackmount – 30" Slide	RMA-30
AntiVirus Software	AV